Multi-level zero-inflated poisson regression modelling of correlated count data with excess zeros.

نویسندگان

  • Andy H Lee
  • Kui Wang
  • Jane A Scott
  • Kelvin K W Yau
  • Geoffrey J McLachlan
چکیده

Count data with excess zeros relative to a Poisson distribution are common in many biomedical applications. A popular approach to the analysis of such data is to use a zero-inflated Poisson (ZIP) regression model. Often, because of the hierarchical study design or the data collection procedure, zero-inflation and lack of independence may occur simultaneously, which render the standard ZIP model inadequate. To account for the preponderance of zero counts and the inherent correlation of observations, a class of multi-level ZIP regression model with random effects is presented. Model fitting is facilitated using an expectation-maximization algorithm, whereas variance components are estimated via residual maximum likelihood estimating equations. A score test for zero-inflation is also presented. The multi-level ZIP model is then generalized to cope with a more complex correlation structure. Application to the analysis of correlated count data from a longitudinal infant feeding study illustrates the usefulness of the approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hurdle, Inflated Poisson and Inflated Negative Binomial Regression Models ‎ for Analysis of Count Data with Extra Zeros

In this paper‎, ‎we ‎propose ‎Hurdle regression models for analysing count responses with extra zeros‎. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset‎. In this example‎, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...

متن کامل

Bayesian Inference for Zero-inflated Poisson Regression Models

Count data with excess zeros are common in social science research and can be considered as a special case of mixture structured data. We exploit the flexibility of the Bayesian analytic approach to model the mixture data structure inherent in zero-inflated count data by using the zero-inflated Poisson (ZIP) model. We discuss the importance of modelling excess-zero count data in social sciences...

متن کامل

Assessment of length of stay in a general surgical unit using a zero-inflated generalized Poisson regression

Background: The effective use of limited health care resources is of prime importance. Assessing the length of stay (LOS) is especially important in organizing hospital services and health system. This study was conducted to identify predictors of LOS among patients who were admitted to a general surgical unit.    Methods: In this cross-sectional study, the sample included all patien...

متن کامل

Zero-inflated Poisson regression mixture model

Excess zeros and overdispersion are commonly encountered phenomena that limit the use of traditional Poisson regression models for modeling count data. The focus of this paper is on modeling count data in the case that a population has excess zero counts and also consists of several sub-populations in the non-zero counts. The proposed zero-inflated Poisson regression mixture model accounts for ...

متن کامل

Zero-Inflated Generalized Poisson Regression Model with an Application to Domestic Violence Data

The generalized Poisson regression model has been used to model dispersed count data. It is a good competitor to the negative binomial regression model when the count data is over-dispersed. Zero-inflated Poisson and zero-inflated negative binomial regression models have been proposed for the situations where the data generating process results into too many zeros. In this paper, we propose a z...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistical methods in medical research

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 2006